skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pai, Sreepathi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Titolo, Laura (Ed.)
    Many recent computational accelerators provide non-standard (e.g., reduced precision) arithmetic operations to enhance performance for floating-point matrix multiplication. Unfortunately, the properties of these accelerators are not widely understood and lack sufficient descriptions of their behavior. This makes it difficult for tool builders beyond the original vendor to target or simulate the hardware correctly, or for algorithm designers to be confident in their code. To address these gaps, prior studies have probed the behavior of these units with manually crafted tests. Such tests are cumbersome to design, and adapting them as the accelerators evolve requires repeated manual effort. We present a formal model for the tensor cores of NVIDIA’s Volta, Turing, and Ampere GPUs. We identify specific properties—rounding mode, precision, and accumulation order—that drive these cores’ behavior. We formalize these properties and then use the formalization to automatically generate discriminating inputs that illustrate differences among machines. Our results confirm many of the findings of previous tensor core studies, but also identify subtle disagreements. In particular, NVIDIA’s machines do not, as previously reported, use round-to-zero for accumulation, and their 5-term accumulator requires 3 extra carry-out bits for full accuracy. Using our formal model, we analyze two existing algorithms that use half-precision tensor cores to accelerate single-precision multiplication with error correction. Our analysis reveals that the newer algorithm, designed to be more accurate than the first, is actually less accurate for certain inputs. 
    more » « less
    Free, publicly-accessible full text available June 12, 2026
  2. Performance analysis is critical for GPU programs with data-dependent behavior, but models like Roofline are not very useful for them and interpreting raw performance counters is tedious. In this work, we present an analytical model for shared memory atomics (fetch-and-op and compare-and-swap instructions on NVIDIA Volta and Ampere GPU) that allows users to immediately determine if shared memory atomic operations are a bottleneck for a program’s execution. Our model is based on modeling the architecture as a single-server queuing model whose inputs are performance counters. It captures load-dependent behavior such as pipelining, parallelism, and different access patterns. We embody this model in a tool that uses CUDA hardware counters as parameters to predict the utilization of the shared-memory atomic unit. To the best of our knowledge, no existing profiling tool or model provides this capability for shared-memory atomic operations. We used the model to compare two histogram kernels that use shared-memory atomics. Although nearly identical, their performance can be different by up to 30%. Our tool correctly identifies a bottleneck shift from shared-memory atomic unit as the cause of this discrepancy 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. Free, publicly-accessible full text available January 1, 2026
  4. Finite-state automata serve as compute kernels for many application domains such as pattern matching and data analytics. Existing approaches on GPUs exploit three levels of parallelism in automata processing tasks: 1)~input stream level, 2)~automaton-level and 3)~state-level. Among these, only state-level parallelism is intrinsic to automata while the other two levels of parallelism depend on the number of automata and input streams to be processed. As GPU resources increase, a parallelism-limited automata processing task can underutilize GPU compute resources. To this end, we propose AsyncAP, a low-overhead approach that optimizes for both scalability and throughput. Our insight is that most automata processing tasks have an additional source of parallelism originating from the input symbols which has not been leveraged before. Making the matching process associated with the automata tasks asynchronous, i.e., parallel GPU threads start processing an input stream from different input locations instead of processing it serially, improves throughput significantly and scales with input length. When the task does not have enough parallelism to utilize all the GPU cores, detailed evaluation across 12 evaluated applications shows that AsyncAP achieves up to 58× speedup on average over the state-of-the-art GPU automata processing engine. When the tasks have enough parallelism to utilize GPU cores, AsyncAP still achieves 2.4× speedup. 
    more » « less
  5. null (Ed.)
  6. Modern GPUs often use near memory or high-bandwidth memory, which may be managed as cache when the application data is too large to fit in the near memory. Unlike CPU caches, the near memory cache has a much larger size. A recent approach is statistical caching, which shows near optimal results when managing large memory for file caching. The prior work is ideal and not practical. This paper outlines two extensions. It first formulates a new caching algorithm called least expected use (LEU) replacement and shows, through examples, that the statistical solution automatically integrates two otherwise disparate policies. Then the paper describes a system design to implement LEU. To position the new design for discussion, the paper draws parallels with two familiar ideas, branch prediction and spectral analysis, and considers a set of opportunities and challenges of achieving statistical caching in near memory. 
    more » « less
  7. Dynamic parallelism (DP) is a promising feature for GPUs, which allows on-demand spawning of kernels on the GPU without any CPU intervention. However, this feature has two major drawbacks. First, the launching of GPU kernels can incur significant performance penalties. Second, dynamically-generated kernels are not always able to efficiently utilize the GPU cores due to hardware-limits. To address these two concerns cohesively, we propose SPAWN, a runtime framework that controls the dynamically-generated kernels, thereby directly reducing the associated launch overheads and queuing latency. Moreover, it allows a better mix of dynamically-generated and original (parent) kernels for the scheduler to effectively hide the remaining overheads and improve the utilization of the GPU resources. Our results show that, across 13 benchmarks, SPAWN achieves 69% and 57% speedup over the flat (non-DP) implementation and baseline DP, respectively. 
    more » « less